metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(μ -4,4'-Bipyridine- $\kappa^2 N:N'$)bis[triaqua-(4,4'-bipyridine- κN)(3-nitrophthalato- κO^2)cobalt(II)]

Hong-Xu Guo,^a* Zhong-Liang Yao,^b Wen Weng^a and Xi-Zhong Li^a

^aDepartment of Chemistry and Environmental Science, Zhangzhou Normal University, Zhangzhou, Fujian 363000, People's Republic of China, and ^bDepart-Department of Biology and Chemical Engineering, Fuqing Branch of Fujian Normal University, Fuqing, Fujian 350300, People's Republic of China Correspondence e-mail: ghx919@yahoo.com.cn

Received 29 May 2009; accepted 20 July 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.051; wR factor = 0.134; data-to-parameter ratio = 14.9.

The title binuclear complex, $[Co_2(C_8H_3NO_6)_2(C_{10}H_8N_2)_3$ - $(H_2O)_6]$, has been synthesized hydrothermally from 3-nitrophthalic acid (H₂NPA), Co(NO₃)₂·6H₂O and 4,4'-bipyridine (4,4'-bipy). The molecule of the complex occupies a special position on an inversion centre. The Co^{II} atom has a slightly distorted octahedral environment formed by two N atoms from two 4,4'-bipy ligands, one carboxylate O atom from NPA, and three O atoms of water molecules. An extensive O– $H \cdots O$ and N– $H \cdots O$ hydrogen-bonding system links molecules of the complex into a three-dimensional network.

Related literature

For background to metal-involved supramolecular compounds, see: Noro (2004); Yaghi *et al.* (2003); Rao *et al.* (2004); Huang *et al.* (2004); Zhang *et al.* (2004). For other 3-nitrophthalic derivatives, see: Deng *et al.* (2007); Guo (2004); Song *et al.* (2007); Xiong & Qi (2007).

Experimental

Crystal data

 $\begin{array}{ll} [\mathrm{Co}_2(\mathrm{C}_8\mathrm{H}_3\mathrm{NO}_6)_2(\mathrm{C}_{10}\mathrm{H}_8\mathrm{N}_2)_{3^-} & \beta = 103.92~(3)^\circ \\ (\mathrm{H}_2\mathrm{O})_6] & V = 2303.8~(8)~\mathrm{\AA}^3 \\ M_r = 1112.74 & Z = 2 \\ \mathrm{Monoclinic}, P2_1/c & \mathrm{Mo}~\mathrm{K}\alpha~\mathrm{radiation} \\ a = 15.672~(3)~\mathrm{\AA} & \mu = 0.81~\mathrm{mm}^{-1} \\ b = 9.4283~(19)~\mathrm{\AA} & T = 293~\mathrm{K} \\ c = 16.063~(3)~\mathrm{\AA} & 0.21~\times~0.15~\times~0.12 \end{array}$

Data collection

Siemens SMART CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min} = 0.765, T_{\rm max} = 0.872$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.134$ S = 1.015252 reflections 352 parameters 9 restraints $\mu = 0.81 \text{ mm}^{-1}$ T = 293 K 0.21 × 0.15 × 0.12 mm

21789 measured reflections 5252 independent reflections 3669 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.079$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.38~e~{\rm \AA}^{-3}\\ &\Delta\rho_{min}=-0.45~e~{\rm \AA}^{-3} \end{split}$$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$07 - H7A \cdots 03^{i}$ $07 - H7B \cdots 04^{ii}$ $08 - H8A \cdots 02$ $08 - H8B \cdots N3^{iii}$ $09 - H9B \cdots 04^{i}$ $09 - H9B \cdots 04^{i}$	0.842 (10) 0.845 (10) 0.854 (10) 0.857 (10) 0.849 (10) 0.849 (10)	1.960 (11) 1.942 (12) 1.855 (13) 2.021 (15) 1.810 (13) 1.968 (12)	2.798 (3) 2.772 (3) 2.677 (3) 2.830 (4) 2.645 (3)	173 (3) 167 (3) 161 (3) 159 (3) 167 (3)
0)=11)0=05	0.047 (10)	1.900 (13)	2.001 (5)	107 (5)

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) x, y + 1, z; (iii) -x, -y + 2, -z.

Data collection: *SMART* (Siemens, 1994); cell refinement: *SAINT* (Siemens, 1994); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was supported by the Natural Science Foundation of Fujian Province (No. 2008 J0172) and the National Natural Science Foundation of China (20705031).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YA2101).

References

- Deng, Y. H., Liu, J., Yang, Y. L., Zhu, H. J. & Ma, H. W. (2007). Chin. J. Struct. Chem. 26, 642–648.
- Guo, M.-L. (2004). Acta Cryst. E60, m1684-m1685.
- Huang, X. C., Zhang, J. P., Lin, Y. Y., Yu, X. L. & Chen, X. M. (2004). Chem. Commun. pp. 1100–1101.
- Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.
- Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Siemens (1994). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Song, Y. S., Yan, B. & Chen, Z. X. (2007). Appl. Organomet. Chem. 21, 150– 155.
- Xiong, L.-Q. & Qi, C.-M. (2007). Acta Cryst. C63, m10-m12.
- Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). *Nature (London)*, **423**, 705–714.
- Zhang, J. P., Zheng, S. L., Huang, X. C. & Chen, X. M. (2004). Angew. Chem. Int. Ed. 43, 206–209.

Acta Cryst. (2009). E65, m992-m993 [doi:10.1107/S160053680902875X]

$(\mu$ -4,4'-Bipyridine- $\kappa^2 N:N'$)bis[triaqua(4,4'-bipyridine- κN)(3-nitrophthalato- κO^2)cobalt(II)]

H.-X. Guo, Z.-L. Yao, W. Weng and X.-Z. Li

Comment

Design and assembly of metal-involving supramolecular architectures are currently of great interest in the field of supramolecular chemistry and crystal engineering, because they can provide novel topology and functional materials (Noro, 2004; Yaghi *et al.*, 2003; Rao *et al.*, 2004). During the past decades, extensive efforts have been focused on the design and assembly of supramolecular architectures of this kind (Huang *et al.*, 2004; Zhang *et al.*, 2004). Although the multifunctional ligand, 3-nitrophthalic acid (H₂NPA), has been utilized to build many coordination complexes, such as dinuclear centrosymmetric complexes [LaL(HL)(H₂O)₃]₂.2H₂O (L = NPA) (Deng *et al.*, 2007), [La₂(C₈H₃NO₆)₂(C₈H₄NO₆)₂(H₂O)₆].2H₂O (Xiong & Qi, 2007), and [Na(C₈H₄NO₆)(H₂O)₃].H₂O (Guo, 2004), only a few mixed ligand complexes involving NPA have been reported so far (Song *et al.*, 2007). In this work, we employed NPA and 4,4'-bipy ligands to produce a novel binuclear complex, [Co₂(NPA)₂(bipy)₃(H₂O)₆](I).

Complex (I) occupies a special position in the inversion centre; the asymmetric unit consists of one cobalt(II) atom, one NPA ligand, one terminal and one-half of a bridging 4,4'-bipy groups, as well as three metal-coordinated water molecules.(Fig. 1 and Table 1). The Co1 atom has a a slightly distorted octahedral environment formed by two N atoms from two different bipy ligands, one carboyxlate O atom of the NPA ligand, and three water molecules. The μ_2 -4,4'-bipyridine ligand bridges two [Co(NPA)(bipy)(H₂O)₃] units of the binuclear complex.

The extensive system of O—H…O hydrogen bonds links molecules of the complex into a three-dimensional network (Fig. 2; Table 1).

Experimental

A solution of $Co(NO_3)_2.6H_2O(0.0291 \text{ g}, 0.1 \text{ mmol})$ in 5 ml of water was added dropwise under continuous stirring to an aqueous solution (5 ml) of 3-nitrophthalic acid (0.0211 g, 0.1 mmol) and 4,4'-bipyridine (0.0156 g, 0.1 mmol). The resulting mixture was then transferred into a Teflon-lined stainless steel vessel, which was sealed and kept at 393 K for 72 h. The vessel was then cooled to room temperature, the reaction mixture was filtered, and single crystals were obtained from the filtrate after a few days of slow evaporation at room temperature.

Refinement

The aromatic H atoms were positioned geometrically and allowed to ride during subsequent refinement, with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. Water H atoms were located in a difference map and refined with O—H and H…H distance restraints of 0.85 (1) and 1.39 (1) Å, respectively and $U_{iso}(H)=1.2U_{eq}(O)$.

Figures

Fig. 1. Molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level; H-atoms bound to phenyl C atoms are omitted for clarity. H-atoms bound to O are shown as small circles of arbitrary radius. The unlabeled atoms are derived from their labeled counterparts *via* symmetry transformation (-x + 1, -y + 2, -z + 1).

Fig. 2. Crystal packing of the title compound viewed down the *a* axis; H-bonds are shown as dashed lines.

$(\mu-4,4'-Bipyridine-\kappa^2N:N')$ bis[triaqua(4,4'-bipyridine- κN)(3-nitrophthalato- κO^2)cobalt(II)]

 $F_{000} = 1144$

 $\theta = 3.0-27.5^{\circ}$

 $\mu = 0.81 \text{ mm}^{-1}$ T = 293 K

 $0.21\times0.15\times0.12~mm$

Prism, pink

 $D_{\rm x} = 1.604 {\rm Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 21789 reflections

Crystal data

 $[Co_{2}(C_{8}H_{3}NO_{6})_{2}(C_{10}H_{8}N_{2})_{3}(H_{2}O)_{6}]$ $M_{r} = 1112.74$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc a = 15.672 (3) Å b = 9.4283 (19) Å c = 16.063 (3) Å $\beta = 103.92$ (3)° V = 2303.8 (8) Å³ Z = 2

Data collection

Siemens SMART CCD area-detector diffractometer	5252 independent reflections
Radiation source: fine-focus sealed tube	3669 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.079$
Detector resolution: no pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}$
T = 293 K	$\theta_{\min} = 3.0^{\circ}$
ω scans	$h = -20 \rightarrow 20$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$k = -12 \rightarrow 12$
$T_{\min} = 0.765, T_{\max} = 0.872$	$l = -20 \rightarrow 19$
21789 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.051$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.134$	$w = 1/[\sigma^2(F_o^2) + (0.075P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.01	$(\Delta/\sigma)_{\text{max}} = 0.001$
5252 reflections	$\Delta \rho_{max} = 0.38 \text{ e } \text{\AA}^{-3}$
352 parameters	$\Delta \rho_{\rm min} = -0.45 \ e \ {\rm \AA}^{-3}$
9 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direc methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
Co1	0.32172 (2)	0.70261 (4)	0.20771 (2)	0.02477 (14)
N1	0.17512 (19)	0.4939 (3)	-0.07320 (18)	0.0434 (7)
N2	0.24471 (16)	0.8547 (3)	0.12309 (15)	0.0299 (6)
N3	-0.0484 (2)	1.2759 (4)	-0.1856 (2)	0.0507 (8)
N4	0.35953 (16)	0.8342 (3)	0.31977 (14)	0.0288 (6)
01	0.30328 (14)	0.5593 (2)	0.10689 (12)	0.0303 (5)
O2	0.22712 (15)	0.3866 (2)	0.15197 (13)	0.0398 (6)
O3	0.41953 (15)	0.2894 (2)	0.18540 (13)	0.0378 (6)
O4	0.43538 (15)	0.0753 (2)	0.13428 (14)	0.0395 (6)
O5	0.13514 (18)	0.5266 (3)	-0.02137 (16)	0.0565 (7)
O6	0.1662 (2)	0.5543 (4)	-0.14226 (19)	0.0909 (12)
O7	0.43623 (14)	0.7886 (2)	0.17266 (13)	0.0308 (5)
H7A	0.4781 (16)	0.782 (3)	0.2166 (14)	0.037*
H7B	0.4312 (19)	0.8724 (16)	0.1535 (17)	0.037*
O8	0.21785 (14)	0.6093 (3)	0.25287 (13)	0.0337 (5)
H8A	0.2092 (19)	0.534 (2)	0.2224 (18)	0.040*

H8B	0.1712 (13)	0.658 (3)	0.243 (2)	0.040*
09	0.40189 (14)	0.5401 (2)	0.27330 (13)	0.0331 (5)
H9B	0.4550 (9)	0.560 (3)	0.2970 (18)	0.040*
Н9С	0.4003 (18)	0.469 (2)	0.2406 (17)	0.040*
C1	0.28309 (19)	0.3469 (3)	0.02915 (18)	0.0272 (6)
C2	0.23784 (19)	0.3751 (3)	-0.05515 (18)	0.0312 (7)
C3	0.2485 (2)	0.2972 (4)	-0.1248 (2)	0.0386 (8)
H3A	0.2170	0.3202	-0.1800	0.046*
C4	0.3062 (2)	0.1854 (4)	-0.1112 (2)	0.0420 (8)
H4A	0.3132	0.1298	-0.1570	0.050*
C5	0.3537 (2)	0.1565 (3)	-0.02903 (19)	0.0359 (7)
H5A	0.3936	0.0817	-0.0203	0.043*
C6	0.34391 (19)	0.2355 (3)	0.04132 (18)	0.0283 (7)
C7	0.26975 (19)	0.4381 (3)	0.10318 (17)	0.0273 (6)
C8	0.4034 (2)	0.1983 (3)	0.12786 (19)	0.0290 (6)
C9	0.2360 (2)	0.8381 (4)	0.03926 (19)	0.0380 (8)
H9A	0.2676	0.7659	0.0210	0.046*
C10	0.1829 (2)	0.9217 (4)	-0.02198 (19)	0.0378 (8)
H10A	0.1795	0.9052	-0.0798	0.045*
C11	0.1994 (2)	0.9611 (4)	0.1467 (2)	0.0401 (8)
H11A	0.2049	0.9761	0.2050	0.048*
C12	0.1452 (2)	1.0492 (4)	0.0896 (2)	0.0400 (8)
H12A	0.1155	1.1221	0.1096	0.048*
C13	0.0546 (2)	1.0864 (4)	-0.1498 (2)	0.0481 (9)
H13A	0.0827	1.0105	-0.1690	0.058*
C14	-0.0048 (3)	1.1679 (5)	-0.2077 (2)	0.0558 (11)
H14A	-0.0148	1.1454	-0.2656	0.067*
C15	0.0285 (2)	1.2325 (4)	-0.0402 (2)	0.0442 (9)
H15A	0.0388	1.2599	0.0170	0.053*
C16	-0.0308 (3)	1.3064 (4)	-0.1027 (3)	0.0531 (10)
H16A	-0.0603	1.3824	-0.0855	0.064*
C17	0.13452 (19)	1.0300 (3)	0.00195 (19)	0.0300 (7)
C18	0.07229 (19)	1.1180 (4)	-0.06323 (19)	0.0320 (7)
C19	0.3917 (2)	0.9648 (3)	0.31517 (18)	0.0331 (7)
H19A	0.3766	1.0121	0.2629	0.040*
C20	0.4460 (2)	1.0327 (3)	0.38372 (18)	0.0310 (7)
H20A	0.4674	1.1229	0.3769	0.037*
C21	0.46875 (18)	0.9661 (3)	0.46269 (17)	0.0261 (6)
C22	0.4311 (2)	0.8345 (3)	0.46904 (18)	0.0336 (7)
H22A	0.4417	0.7880	0.5216	0.040*
C23	0.3779 (2)	0.7729 (4)	0.39713 (18)	0.0340 (7)
H23A	0.3536	0.6845	0.4027	0.041*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co1	0.0295 (2)	0.0217 (2)	0.0215 (2)	-0.00056 (17)	0.00289 (16)	-0.00077 (15)
N1	0.0390 (16)	0.0472 (19)	0.0376 (15)	0.0047 (14)	-0.0032 (14)	0.0032 (14)

N2	0.0317 (13)	0.0290 (15)	0.0277 (12)	0.0015 (11)	0.0045 (11)	0.0015 (11)
N3	0.0410 (17)	0.055 (2)	0.0513 (18)	0.0092 (15)	0.0009 (15)	0.0066 (15)
N4	0.0353 (14)	0.0283 (15)	0.0223 (11)	-0.0019 (11)	0.0062 (11)	-0.0032 (10)
01	0.0412 (12)	0.0224 (12)	0.0254 (10)	-0.0036 (9)	0.0044 (9)	-0.0011 (8)
O2	0.0486 (14)	0.0332 (14)	0.0409 (12)	-0.0088 (11)	0.0170 (11)	-0.0025 (10)
O3	0.0447 (13)	0.0299 (13)	0.0323 (11)	0.0056 (10)	-0.0036 (10)	-0.0036 (9)
O4	0.0456 (13)	0.0205 (12)	0.0458 (13)	0.0039 (10)	-0.0020 (10)	0.0026 (9)
O5	0.0578 (16)	0.0590 (19)	0.0494 (15)	0.0215 (14)	0.0065 (13)	-0.0057 (13)
O6	0.103 (3)	0.112 (3)	0.0584 (18)	0.053 (2)	0.0208 (17)	0.0473 (19)
O7	0.0360 (12)	0.0228 (12)	0.0312 (11)	-0.0017 (9)	0.0032 (9)	0.0009 (9)
O8	0.0325 (11)	0.0340 (13)	0.0335 (11)	0.0033 (10)	0.0060 (10)	0.0027 (9)
O9	0.0364 (12)	0.0256 (12)	0.0321 (11)	0.0023 (9)	-0.0017 (10)	-0.0028 (9)
C1	0.0291 (15)	0.0228 (16)	0.0275 (14)	-0.0066 (12)	0.0026 (12)	-0.0011 (12)
C2	0.0311 (16)	0.0282 (18)	0.0309 (15)	-0.0014 (13)	0.0008 (13)	0.0008 (13)
C3	0.0413 (18)	0.045 (2)	0.0258 (15)	-0.0057 (16)	0.0006 (14)	-0.0006 (14)
C4	0.051 (2)	0.045 (2)	0.0306 (16)	-0.0083 (17)	0.0111 (15)	-0.0097 (15)
C5	0.0416 (18)	0.0237 (17)	0.0419 (18)	-0.0010 (14)	0.0091 (15)	-0.0062 (14)
C6	0.0312 (16)	0.0218 (16)	0.0310 (15)	-0.0052 (12)	0.0054 (13)	0.0008 (12)
C7	0.0299 (15)	0.0229 (16)	0.0248 (14)	0.0017 (12)	-0.0020 (12)	-0.0007 (11)
C8	0.0307 (15)	0.0221 (16)	0.0320 (15)	-0.0039 (13)	0.0034 (13)	0.0023 (13)
C9	0.052 (2)	0.0327 (19)	0.0304 (16)	0.0115 (15)	0.0128 (15)	0.0041 (14)
C10	0.0468 (19)	0.041 (2)	0.0246 (15)	0.0107 (16)	0.0062 (14)	0.0040 (14)
C11	0.0445 (19)	0.042 (2)	0.0309 (16)	0.0059 (16)	0.0044 (15)	-0.0068 (15)
C12	0.0460 (19)	0.037 (2)	0.0340 (16)	0.0140 (16)	0.0048 (15)	-0.0081 (14)
C13	0.044 (2)	0.054 (2)	0.0421 (19)	0.0178 (17)	0.0011 (16)	-0.0041 (17)
C14	0.049 (2)	0.073 (3)	0.0392 (19)	0.020 (2)	-0.0007 (18)	-0.0034 (19)
C15	0.048 (2)	0.042 (2)	0.0410 (19)	0.0125 (17)	0.0076 (16)	0.0008 (16)
C16	0.056 (2)	0.042 (2)	0.060 (2)	0.0207 (18)	0.012 (2)	0.0046 (18)
C17	0.0271 (15)	0.0279 (17)	0.0345 (16)	0.0007 (13)	0.0062 (13)	0.0043 (13)
C18	0.0262 (15)	0.0337 (18)	0.0348 (16)	0.0024 (13)	0.0050 (13)	0.0026 (13)
C19	0.0444 (18)	0.0284 (18)	0.0246 (14)	-0.0008 (14)	0.0046 (13)	-0.0019 (12)
C20	0.0388 (17)	0.0259 (17)	0.0275 (14)	-0.0041 (13)	0.0061 (13)	-0.0022 (12)
C21	0.0292 (14)	0.0260 (16)	0.0232 (13)	-0.0017 (12)	0.0064 (12)	-0.0039 (12)
C22	0.0441 (18)	0.0344 (19)	0.0216 (14)	-0.0050 (14)	0.0065 (13)	0.0015 (13)
C23	0.0416 (18)	0.0325 (19)	0.0275 (15)	-0.0122 (14)	0.0077 (14)	-0.0028 (13)

Geometric parameters (Å, °)

Co1—O1	2.075 (2)	C4—C5	1.378 (4)
Co1—O9	2.097 (2)	C4—H4A	0.9300
Co1—O8	2.126 (2)	C5—C6	1.393 (4)
Co1—N2	2.138 (2)	C5—H5A	0.9300
Co1—N4	2.149 (2)	C6—C8	1.517 (4)
Co1—O7	2.164 (2)	C9—C10	1.374 (4)
N1—O5	1.197 (4)	С9—Н9А	0.9300
N1—06	1.225 (4)	C10—C17	1.380 (4)
N1—C2	1.472 (4)	C10—H10A	0.9300
N2—C9	1.330 (4)	C11—C12	1.370 (4)
N2—C11	1.336 (4)	C11—H11A	0.9300

N2 C14	1 222 (5)	C12 C17	1 200 (1)
N3	1.322(3)	C12 = U12	1.388 (4)
N3-C16	1.325 (5)	CI2—HIZA	0.9300
N4—C23	1.337 (4)	C13—C14	1.380 (5)
N4—C19	1.339 (4)	C13—C18	1.384 (4)
O1—C7	1.253 (4)	C13—H13A	0.9300
O2—C7	1.244 (4)	C14—H14A	0.9300
O3—C8	1.242 (4)	C15—C18	1.376 (5)
O4—C8	1.257 (4)	C15—C16	1.382 (5)
O7—H7A	0.842 (10)	C15—H15A	0.9300
O7—H7B	0.845 (10)	C16—H16A	0.9300
O8—H8A	0.854 (10)	C17—C18	1.498 (4)
O8—H8B	0.847 (10)	C19—C20	1.377 (4)
O9—H9B	0.849 (10)	С19—Н19А	0.9300
09—Н9С	0.849 (10)	C20—C21	1.383 (4)
C1 - C2	1 395 (4)	C20—H20A	0.9300
C1 - C6	1.401 (4)	C_{21} C_{22}	1 388 (4)
C1 $C7$	1.101(1)		1.300 (1)
	1.322 (4)	C21—C21	1.497 (3)
C2—C3	1.382 (4)	C22—C23	1.380 (4)
C3—C4	1.372 (5)	С22—Н22А	0.9300
С3—НЗА	0.9300	С23—Н23А	0.9300
O1—Co1—O9	82.56 (8)	C1—C6—C8	123.3 (3)
O1—Co1—O8	91.30 (9)	O2—C7—O1	127.5 (3)
O9—Co1—O8	86.66 (9)	O2—C7—C1	117.9 (3)
O1—Co1—N2	89.37 (9)	O1—C7—C1	114.7 (3)
O9—Co1—N2	170.96 (9)	O3—C8—O4	124.8 (3)
O8—Co1—N2	97.64 (9)	O3—C8—C6	119.5 (3)
O1—Co1—N4	171.19 (9)	O4—C8—C6	115.7 (3)
09—Co1—N4	89.42 (9)	N2—C9—C10	123.7 (3)
08—Co1—N4	91 87 (9)	N2-C9-H9A	118.2
N2-Co1-N4	98.34 (10)	C10_C9_H9A	118.2
$01-C_{0}1-07$	90.54 (8)	C_{0} C_{10} C_{17}	120.3 (3)
09-001-07	90.34 (0) 88 20 (0)	$C_{0} - C_{10} - H_{10}$	110.0
0^{8} Col 07	174 37 (8)	C_{17} C_{10} H_{10A}	119.9
N2 Col 07	174.37 (8) 87.70 (0)	N2 C11 C12	117.7
N4_Col_07	87.70 (9) 85.57 (0)	$N_2 = C_{11} = C_{12}$	123.4 (3)
N4	85.57 (9)		118.5
05-NI-06	123.1 (3)		118.3
05—NI—C2	119.7 (3)		120.3 (3)
06—N1—C2	117.2 (3)	C11—C12—H12A	119.9
C9—N2—C11	116.3 (3)	C17—C12—H12A	119.9
C9—N2—Co1	118.0 (2)	C14—C13—C18	119.8 (3)
C11—N2—Co1	125.5 (2)	C14—C13—H13A	120.1
C14—N3—C16	116.1 (3)	C18—C13—H13A	120.1
C23—N4—C19	116.7 (3)	N3—C14—C13	123.8 (3)
C23—N4—Co1	118.9 (2)	N3—C14—H14A	118.1
C19—N4—Co1	121.1 (2)	C13—C14—H14A	118.1
C7—O1—Co1	127.50 (19)	C18—C15—C16	119.5 (3)
Co1—O7—H7A	106 (2)	C18—C15—H15A	120.3
Со1—О7—Н7В	116 (2)	C16—C15—H15A	120.3

H7A—O7—H7B	110.9 (16)	N3—C16—C15	124.2 (4)
Co1—O8—H8A	100 (2)	N3—C16—H16A	117.9
Co1—O8—H8B	114 (2)	C15—C16—H16A	117.9
H8A—O8—H8B	109.6 (16)	C10-C17-C12	116.0 (3)
Со1—О9—Н9В	118 (2)	C10-C17-C18	121.6 (3)
Со1—О9—Н9С	110 (2)	C12—C17—C18	122.4 (3)
Н9В—О9—Н9С	109.4 (16)	C15—C18—C13	116.5 (3)
C2—C1—C6	116.7 (3)	C15—C18—C17	121.9 (3)
C2—C1—C7	121.2 (3)	C13—C18—C17	121.5 (3)
C6—C1—C7	122.1 (2)	N4	123.5 (3)
C3—C2—C1	123.5 (3)	N4—C19—H19A	118.2
C3—C2—N1	116.7 (3)	С20—С19—Н19А	118.2
C1—C2—N1	119.7 (3)	C19—C20—C21	119.7 (3)
C4—C3—C2	118.9 (3)	С19—С20—Н20А	120.1
С4—С3—НЗА	120.6	C21—C20—H20A	120.1
С2—С3—НЗА	120.6	C20—C21—C22	116.9 (3)
C3—C4—C5	119.2 (3)	C20-C21-C21 ⁱ	121.0 (3)
C3—C4—H4A	120.4	C22—C21—C21 ⁱ	122.0 (3)
C5—C4—H4A	120.4	C23—C22—C21	119.8 (3)
C4—C5—C6	122.1 (3)	С23—С22—Н22А	120.1
C4—C5—H5A	118.9	C21—C22—H22A	120.1
С6—С5—Н5А	118.9	N4—C23—C22	123.2 (3)
C5—C6—C1	119.5 (3)	N4—C23—H23A	118.4
C5—C6—C8	117.2 (3)	С22—С23—Н23А	118.4
01—Co1—N2—C9	-21.2 (2)	C2—C1—C7—O2	106.9 (3)
O8—Co1—N2—C9	-112.4 (2)	C6—C1—C7—O2	-76.2 (4)
N4—Co1—N2—C9	154.5 (2)	C2—C1—C7—O1	-72.5 (4)
O7—Co1—N2—C9	69.3 (2)	C6—C1—C7—O1	104.5 (3)
O1-Co1-N2-C11	154.2 (3)	C5—C6—C8—O3	155.8 (3)
O8—Co1—N2—C11	63.0 (3)	C1—C6—C8—O3	-21.8 (5)
N4—Co1—N2—C11	-30.1 (3)	C5—C6—C8—O4	-21.9 (4)
O7—Co1—N2—C11	-115.2 (3)	C1—C6—C8—O4	160.4 (3)
O9—Co1—N4—C23	-31.5 (2)	C11—N2—C9—C10	-1.1 (5)
O8—Co1—N4—C23	55.1 (2)	Co1—N2—C9—C10	174.7 (3)
N2—Co1—N4—C23	153.1 (2)	N2-C9-C10-C17	-0.1 (5)
O7—Co1—N4—C23	-119.9 (2)	C9—N2—C11—C12	0.9 (5)
O9—Co1—N4—C19	127.1 (2)	Co1—N2—C11—C12	-174.5 (3)
O8—Co1—N4—C19	-146.3 (2)	N2-C11-C12-C17	0.5 (6)
N2-Co1-N4-C19	-48.3 (3)	C16—N3—C14—C13	1.5 (7)
O7—Co1—N4—C19	38.7 (2)	C18-C13-C14-N3	-1.1 (7)
O9—Co1—O1—C7	62.0 (2)	C14—N3—C16—C15	-0.5 (6)
O8—Co1—O1—C7	-24.5 (2)	C18-C15-C16-N3	-1.0 (6)
N2—Co1—O1—C7	-122.1 (2)	C9—C10—C17—C12	1.5 (5)
O7—Co1—O1—C7	150.2 (2)	C9—C10—C17—C18	-176.6 (3)
C6-C1-C2-C3	1.9 (5)	C11—C12—C17—C10	-1.7 (5)
C7—C1—C2—C3	179.0 (3)	C11—C12—C17—C18	176.5 (3)
C6-C1-C2-N1	-177.9 (3)	C16—C15—C18—C13	1.4 (5)
C7—C1—C2—N1	-0.8 (4)	C16—C15—C18—C17	-177.4 (3)

O5—N1—C2—C3	148.7 (3)	C14—C13—C18—C15	-0.5 (6)
O6—N1—C2—C3	-30.8 (5)	C14—C13—C18—C17	178.4 (4)
O5—N1—C2—C1	-31.5 (5)	C10-C17-C18-C15	-175.3 (3)
O6—N1—C2—C1	149.0 (3)	C12-C17-C18-C15	6.7 (5)
C1—C2—C3—C4	0.2 (5)	C10-C17-C18-C13	5.9 (5)
N1—C2—C3—C4	-180.0 (3)	C12-C17-C18-C13	-172.1 (3)
C2—C3—C4—C5	-1.8 (5)	C23—N4—C19—C20	4.3 (5)
C3—C4—C5—C6	1.3 (5)	Co1—N4—C19—C20	-154.8 (3)
C4—C5—C6—C1	0.9 (5)	N4-C19-C20-C21	-1.0 (5)
C4—C5—C6—C8	-176.8 (3)	C19—C20—C21—C22	-3.0 (5)
C2-C1-C6-C5	-2.4 (4)	C19—C20—C21—C21 ⁱ	176.9 (3)
C7—C1—C6—C5	-179.5 (3)	C20—C21—C22—C23	3.6 (5)
C2-C1-C6-C8	175.2 (3)	C21 ⁱ —C21—C22—C23	-176.3 (3)
C7—C1—C6—C8	-1.9 (5)	C19—N4—C23—C22	-3.6 (5)
Co1—O1—C7—O2	13.2 (4)	Co1—N4—C23—C22	156.0 (3)
Co1—O1—C7—C1	-167.53 (18)	C21—C22—C23—N4	-0.3 (5)
Symmetry codes: (i) $-x+1, -y+2, -z+1$.			

Hydrogen-bond geometry (Å, °)

D—H··· A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O7—H7A···O3 ⁱⁱ	0.842 (10)	1.960 (11)	2.798 (3)	173 (3)
O7—H7B···O4 ⁱⁱⁱ	0.845 (10)	1.942 (12)	2.772 (3)	167 (3)
O8—H8A…O2	0.854 (10)	1.855 (13)	2.677 (3)	161 (3)
O8—H8B···N3 ^{iv}	0.847 (10)	2.021 (15)	2.830 (4)	159 (3)
O9—H9B…O4 ⁱⁱ	0.849 (10)	1.810 (13)	2.645 (3)	167 (3)
О9—Н9С…О3	0.849 (10)	1.968 (13)	2.801 (3)	167 (3)

Symmetry codes: (ii) -*x*+1, *y*+1/2, -*z*+1/2; (iii) *x*, *y*+1, *z*; (iv) -*x*, -*y*+2, -*z*.

Fig. 1

